
Chapter 8. Pipelining



Overview

 Pipelining is widely used in modern 
processors.

 Pipelining improves system performance in 
terms of throughput.terms of throughput.

 Pipelined organization requires sophisticated 
compilation techniques.



Basic Concepts



Making the Execution of 
Programs Faster

 Use faster circuit technology to build the 
processor and the main memory.

 Arrange the hardware so that more than one 
operation can be performed at the same time.operation can be performed at the same time.

 In the latter way, the number of operations 
performed per second is increased even 
though the elapsed time needed to perform 
any one operation is not changed.



Traditional Pipeline Concept

Laundry Example

Ann, Brian, Cathy, Dave 
each have one load of clothes 
to wash, dry, and foldto wash, dry, and fold

Washer takes 30 minutes

Dryer takes 40 minutes

“Folder” takes 20 minutes
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Traditional Pipeline Concept

 Sequential laundry takes 6 
30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

Time

 Sequential laundry takes 6 
hours for 4 loads

 If they learned pipelining, 
how long would  laundry 
take? 
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Traditional Pipeline Concept
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 Pipelined laundry takes 
3.5 hours for 4 loads 

A

B

C

D

s

k

O

r

d

e

r



Traditional Pipeline Concept
 Pipelining doesn’t help 

latency of single task, it 
helps throughput of entire 
workload

 Pipeline rate limited by 
slowest pipeline stage

 Multiple tasks operating A

6 PM 7 8 9
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s

Time

30 40 40 40 40 20

 Multiple tasks operating 
simultaneously using 
different resources

 Potential speedup = Number 
pipe stages

 Unbalanced lengths of pipe 
stages reduces speedup

 Time to “fill” pipeline and 
time to “drain” it reduces 
speedup

 Stall for Dependences
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Use the Idea of Pipelining in a 
Computer
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Figure 8.1. Basic idea of instruction pipelining.



Use the Idea of Pipelining in a 
Computer
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Role of Cache Memory

 Each pipeline stage is expected to complete in one 
clock cycle.

 The clock period should be long enough to let the 
slowest pipeline stage to complete.

 Faster stages can only wait for the slowest one to 
complete.

 Since main memory is very slow compared to the 
execution, if each instruction needs to be fetched 
from main memory, pipeline is almost useless.

 Fortunately, we have cache.



Pipeline Performance

 The potential increase in performance 
resulting from pipelining is proportional to the 
number of pipeline stages.

 However, this increase would be achieved  However, this increase would be achieved 
only if all pipeline stages require the same 
time to complete, and there is no interruption 
throughout program execution.

 Unfortunately, this is not true.



Pipeline Performance
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Pipeline Performance

 The previous pipeline is said to have been stalled for two clock 
cycles.

 Any condition that causes a pipeline to stall is called a hazard.
 Data hazard – any condition in which either the source or the 

destination operands of an instruction are not available at the 
time expected in the pipeline. So some operation has to be time expected in the pipeline. So some operation has to be 
delayed, and the pipeline stalls.

 Instruction (control) hazard – a delay in the availability of an 
instruction causes the pipeline to stall.

 Structural hazard – the situation when two instructions require 
the use of a given hardware resource at the same time.



Pipeline Performance
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Figure 8.4. Pipeline stall caused by a cache miss in F2.

(a) Instruction execution steps in successive clock cycles
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Pipeline Performance
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Pipeline Performance

 Again, pipelining does not result in individual 
instructions being executed faster; rather, it is the 
throughput that increases.

 Throughput is measured by the rate at which 
instruction execution is completed.

 Pipeline stall causes degradation in pipeline 
performance.

 We need to identify all hazards that may cause the 
pipeline to stall and to find ways to minimize their 
impact.



Quiz

 Four instructions, the I2 takes two clock 
cycles for execution. Pls draw the figure for 4-
stage pipeline, and figure out the total cycles 
needed for the four instructions to complete.needed for the four instructions to complete.



Data Hazards



Data Hazards

 We must ensure that the results obtained when instructions are 
executed in a pipelined processor are identical to those obtained 
when the same instructions are executed sequentially.

 Hazard occurs
A ← 3 + A
B ← 4 × AB ← 4 × A

 No hazard
A ← 5 × C
B ← 20 + C

 When two operations depend on each other, they must be 
executed sequentially in the correct order.

 Another example:
Mul  R2, R3, R4
Add  R5, R4, R6



Data Hazards
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Operand Forwarding

 Instead of from the register file, the second 
instruction can get data directly from the 
output of ALU after the previous instruction is 
completed.completed.

 A special arrangement needs to be made to 
“forward” the output of ALU to the input of 
ALU.
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Figure 8.7. Operand forwarding in a pipelined processor.
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Handling Data Hazards in 
Software

 Let the compiler detect and handle the 
hazard:

I1: Mul  R2, R3, R4
NOPNOP
NOP

I2: Add  R5, R4, R6
 The compiler can reorder the instructions to 

perform some useful work during the NOP 
slots.



Side Effects

 The previous example is explicit and easily detected.
 Sometimes an instruction changes the contents of a register 

other than the one named as the destination.
 When a location other than one explicitly named in an instruction 

as a destination operand is affected, the instruction is said to 
have a side effect. (Example?)have a side effect. (Example?)

 Example: conditional code flags:
Add  R1, R3
AddWithCarry  R2, R4

 Instructions designed for execution on pipelined hardware should 
have few side effects.



Instruction Hazards



Overview

 Whenever the stream of instructions supplied 
by the instruction fetch unit is interrupted, the 
pipeline stalls.

 Cache miss Cache miss

 Branch



Unconditional Branches
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Branch Timing
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Instruction Queue and 
Prefetching

F : Fetch
instruction

Instruction queue

Instruction fetch unit

E : Execute
instruction

W : Write
results

D : Dispatch/
Decode

Figure 8.10. Use of an instruction queue in the hardware organization of Figure 8.2b.
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Conditional Braches

 A conditional branch instruction introduces 
the added hazard caused by the dependency 
of the branch condition on the result of a 
preceding instruction.

 The decision to branch cannot be made until 
the execution of that instruction has been 
completed.

 Branch instructions represent about 20% of 
the dynamic instruction count of most 
programs.



Delayed Branch

 The instructions in the delay slots are always 
fetched. Therefore, we would like to arrange 
for them to be fully executed whether or not 
the branch is taken.the branch is taken.

 The objective is to place useful instructions in 
these slots.

 The effectiveness of the delayed branch 
approach depends on how often it is possible 
to reorder instructions.
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Delayed Branch
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Branch Prediction

 To predict whether or not a particular branch will be taken.
 Simplest form: assume branch will not take place and continue to 

fetch instructions in sequential address order.
 Until the branch is evaluated, instruction execution along the 

predicted path must be done on a speculative basis.
Speculative execution: instructions are executed before the  Speculative execution: instructions are executed before the 
processor is certain that they are in the correct execution 
sequence.

 Need to be careful so that no processor registers or memory 
locations are updated until it is confirmed that these instructions 
should indeed be executed.



Incorrectly Predicted Branch
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Branch Prediction

 Better performance can be achieved if we arrange 
for some branch instructions to be predicted as 
taken and others as not taken.

 Use hardware to observe whether the target 
address is lower or higher than that of the branch 
instruction.

 Let compiler include a branch prediction bit.

 So far the branch prediction decision is always the 
same every time a given instruction is executed –
static branch prediction.



Influence on 
Instruction Sets



Overview

 Some instructions are much better suited to 
pipeline execution than others.

 Addressing modes

Conditional code flags Conditional code flags



Addressing Modes

 Addressing modes include simple ones and 
complex ones.

 In choosing the addressing modes to be 
implemented in a pipelined processor, we implemented in a pipelined processor, we 
must consider the effect of each addressing 
mode on instruction flow in the pipeline:

 Side effects
 The extent to which complex addressing modes cause 

the pipeline to stall
 Whether a given mode is likely to be used by compilers
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Complex Addressing Mode
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Simple Addressing Mode
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Addressing Modes

 In a pipelined processor, complex addressing 
modes do not necessarily lead to faster execution.

 Advantage: reducing the number of instructions / 
program space

 Disadvantage: cause pipeline to stall / more 
hardware to decode / not convenient for compiler to 
work with

 Conclusion: complex addressing modes are not 
suitable for pipelined execution.



Addressing Modes

 Good addressing modes should have:
 Access to an operand does not require more than one 

access to the memory

 Only load and store instruction access memory operands Only load and store instruction access memory operands

 The addressing modes used do not have side effects

 Register, register indirect, index



Conditional Codes

 If an optimizing compiler attempts to reorder 
instruction to avoid stalling the pipeline when 
branches or data dependencies between 
successive instructions occur, it must ensure successive instructions occur, it must ensure 
that reordering does not cause a change in 
the outcome of a computation.

 The dependency introduced by the condition-
code flags reduces the flexibility available for 
the compiler to reorder instructions.



Conditional Codes
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Figure 8.17. Instruction reordering.



Conditional Codes

 Two conclusion:
 To provide flexibility in reordering instructions, the 

condition-code flags should be affected by as few 
instruction as possible.

 The compiler should be able to specify in which 
instructions of a program the condition codes are 
affected and in which they are not.



Datapath and Control 
Considerations 
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Figure 8.18. Datapath modified for pipelined execution, with
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- Writing into one register in the reg file
- Performing an ALU operation



Superscalar Operation



Overview

 The maximum throughput of a pipelined processor is 
one instruction per clock cycle.

 If we equip the processor with multiple processing 
units to handle several instructions in parallel in 
each processing stage, several instructions start each processing stage, several instructions start 
execution in the same clock cycle – multiple-issue.

 Processors are capable of achieving an instruction 
execution throughput of more than one instruction 
per cycle – superscalar processors.

 Multiple-issue requires a wider path to the cache 
and multiple execution units.
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Figure 8.19. A processor with two execution units.



Timing
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Out-of-Order Execution

 Hazards

 Exceptions

 Imprecise exceptions

 Precise exceptions Precise exceptions
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Execution Completion

 It is desirable to used out-of-order execution, so that an 
execution unit is freed to execute other instructions as soon as 
possible.

 At the same time, instructions must be completed in program 
order to allow precise exceptions.

 The use of temporary registers
 Commitment unit
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Performance 
Considerations



Overview

 The execution time T of a program that has a 
dynamic instruction count N is given by:

where S is the average number of clock cycles it 
R

SN
T




where S is the average number of clock cycles it 
takes to fetch and execute one instruction, and 
R is the clock rate.

 Instruction throughput is defined as the number 
of instructions executed per second.

S

R
Ps 



Overview

 An n-stage pipeline has the potential to increase the 
throughput by n times.

 However, the only real measure of performance is 
the total execution time of a program.

 Higher instruction throughput will not necessarily 
lead to higher performance.

 Two questions regarding pipelining
 How much of this potential increase in instruction throughput can be 

realized in practice?

 What is good value of n?



Number of Pipeline Stages

 Since an n-stage pipeline has the potential to 
increase the throughput by n times, how about we 
use a 10,000-stage pipeline?

 As the number of stages increase, the probability of 
the pipeline being stalled increases.

 The inherent delay in the basic operations increases.

 Hardware considerations (area, power, 
complexity,…)


