
Chapter 8. Pipelining

Overview

 Pipelining is widely used in modern
processors.

 Pipelining improves system performance in
terms of throughput.terms of throughput.

 Pipelined organization requires sophisticated
compilation techniques.

Basic Concepts

Making the Execution of
Programs Faster

 Use faster circuit technology to build the
processor and the main memory.

 Arrange the hardware so that more than one
operation can be performed at the same time.operation can be performed at the same time.

 In the latter way, the number of operations
performed per second is increased even
though the elapsed time needed to perform
any one operation is not changed.

Traditional Pipeline Concept

Laundry Example

Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and foldto wash, dry, and fold

Washer takes 30 minutes

Dryer takes 40 minutes

“Folder” takes 20 minutes

A B C D

Traditional Pipeline Concept

 Sequential laundry takes 6
30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

Time

 Sequential laundry takes 6
hours for 4 loads

 If they learned pipelining,
how long would laundry
take?

A

B

C

D

Traditional Pipeline Concept

6 PM 7 8 9 10 11 Midnight

T

a

s

Time

30 40 40 40 40 20

 Pipelined laundry takes
3.5 hours for 4 loads

A

B

C

D

s

k

O

r

d

e

r

Traditional Pipeline Concept
 Pipelining doesn’t help

latency of single task, it
helps throughput of entire
workload

 Pipeline rate limited by
slowest pipeline stage

 Multiple tasks operating A

6 PM 7 8 9

T

a

s

Time

30 40 40 40 40 20

 Multiple tasks operating
simultaneously using
different resources

 Potential speedup = Number
pipe stages

 Unbalanced lengths of pipe
stages reduces speedup

 Time to “fill” pipeline and
time to “drain” it reduces
speedup

 Stall for Dependences

A

B

C

D

k

O

r

d

e

r

Use the Idea of Pipelining in a
Computer

F
1

E
1

F
2

E
2

F
3

E
3

I1 I2 I3

(a) Sequential execution

Time

F1 E1I1

Instruction

Clock cycle 1 2 3 4
Time

Fetch + Execution

(a) Sequential execution

Instruction
fetch
unit

Execution
unit

Interstage buffer
B1

(b) Hardware organization

F1 E1

F2 E2

F3 E3

I1

I2

I3

(c) Pipelined execution

Figure 8.1. Basic idea of instruction pipelining.

Use the Idea of Pipelining in a
Computer

F4I4

F1

F2

F3

I1

I2

I3

D1

D2

D3

D4

E1

E2

E3

E4

W1

W2

W3

W4

Instruction

Clock cycle 1 2 3 4 5 6 7
Time

Fetch + Decode
+ Execution + Write

Figure 8.2. A 4-stage pipeline.

(a) Instruction execution divided into four steps

F : Fetch
instruction

D : Decode
instruction
and fetch
operands

E: Execute
operation

W : Write
results

Interstage buffers

(b) Hardware organization

B1 B2 B3

Textbook page: 457

Role of Cache Memory

 Each pipeline stage is expected to complete in one
clock cycle.

 The clock period should be long enough to let the
slowest pipeline stage to complete.

 Faster stages can only wait for the slowest one to
complete.

 Since main memory is very slow compared to the
execution, if each instruction needs to be fetched
from main memory, pipeline is almost useless.

 Fortunately, we have cache.

Pipeline Performance

 The potential increase in performance
resulting from pipelining is proportional to the
number of pipeline stages.

 However, this increase would be achieved However, this increase would be achieved
only if all pipeline stages require the same
time to complete, and there is no interruption
throughout program execution.

 Unfortunately, this is not true.

Pipeline Performance

F1

F2

I1

I2

E1

E2

D1

D2

W1

W2

Instruction

Clock cycle 1 2 3 4 5 6 7 8 9
Time

F2

F3

I2

I3

E2

E3

D2

D3

W2

W3

F4 D4I4

Figure 8.3. Effect of an execution operation taking more than one clock cycle.

E4

F5I5 D5 E5

W4

Pipeline Performance

 The previous pipeline is said to have been stalled for two clock
cycles.

 Any condition that causes a pipeline to stall is called a hazard.
 Data hazard – any condition in which either the source or the

destination operands of an instruction are not available at the
time expected in the pipeline. So some operation has to be time expected in the pipeline. So some operation has to be
delayed, and the pipeline stalls.

 Instruction (control) hazard – a delay in the availability of an
instruction causes the pipeline to stall.

 Structural hazard – the situation when two instructions require
the use of a given hardware resource at the same time.

Pipeline Performance

F1

F2

F3

I1

I2

I3

D1

D2

D3

E1

E2

E3

W1

W2

W3

Instruction

1 2 3 4 5 6 7 8 9Clock cycle
Time

Instruction
hazard

Figure 8.4. Pipeline stall caused by a cache miss in F2.

(a) Instruction execution steps in successive clock cycles

1 2 3 4 5 6 7 8Clock cycle

Stage

F: Fetch

D: Decode

E: Execute

W: Write

F1 F2 F3

D1 D2 D3idle idle idle

E1 E2 E3idle idle idle

W1 W2idle idle idle

(b) Function performed by each processor stage in successive clock cycles

9

W3

F2 F2 F2

Time

Idle periods –
stalls (bubbles)

Pipeline Performance

F1I1 E1D1 W1

Instruction

Clock cycle 1 2 3 4 5 6 7

Time

Load X(R1), R2Structural
hazard

F2

F3

I2 (Load)

I3

M2D2

D3

W2

F4I4

Figure 8.5. Effect of a Load instruction on pipeline timing.

F5I5 D5

E2

E3 W3

E4D4

Pipeline Performance

 Again, pipelining does not result in individual
instructions being executed faster; rather, it is the
throughput that increases.

 Throughput is measured by the rate at which
instruction execution is completed.

 Pipeline stall causes degradation in pipeline
performance.

 We need to identify all hazards that may cause the
pipeline to stall and to find ways to minimize their
impact.

Quiz

 Four instructions, the I2 takes two clock
cycles for execution. Pls draw the figure for 4-
stage pipeline, and figure out the total cycles
needed for the four instructions to complete.needed for the four instructions to complete.

Data Hazards

Data Hazards

 We must ensure that the results obtained when instructions are
executed in a pipelined processor are identical to those obtained
when the same instructions are executed sequentially.

 Hazard occurs
A ← 3 + A
B ← 4 × AB ← 4 × A

 No hazard
A ← 5 × C
B ← 20 + C

 When two operations depend on each other, they must be
executed sequentially in the correct order.

 Another example:
Mul R2, R3, R4
Add R5, R4, R6

Data Hazards

F1I1 (Mul) D1 E1

Instruction

1 2 3 4 5 6 7 8 9Clock cycle

W1

Time

F2

F3

I2 (Add)

I3 D3 E3

E2

W3

Figure 8.6. Pipeline stalled by data dependency between D2 and W1.

D2A W2

F4 D4 E4 W4I4

D2

Figure 8.6. Pipeline stalled by data dependency between D2 and W1.

Operand Forwarding

 Instead of from the register file, the second
instruction can get data directly from the
output of ALU after the previous instruction is
completed.completed.

 A special arrangement needs to be made to
“forward” the output of ALU to the input of
ALU.

Register
file

SRC1 SRC2

RSLT

Destination

Source 1

Source 2

ALU

(a) Datapath

E: Execute
(ALU)

W: Write
(Register file)

SRC1,SRC2 RSLT

(b) Position of the source and result registers in the processor pipeline

Figure 8.7. Operand forwarding in a pipelined processor.

Forwarding path

Handling Data Hazards in
Software

 Let the compiler detect and handle the
hazard:

I1: Mul R2, R3, R4
NOPNOP
NOP

I2: Add R5, R4, R6
 The compiler can reorder the instructions to

perform some useful work during the NOP
slots.

Side Effects

 The previous example is explicit and easily detected.
 Sometimes an instruction changes the contents of a register

other than the one named as the destination.
 When a location other than one explicitly named in an instruction

as a destination operand is affected, the instruction is said to
have a side effect. (Example?)have a side effect. (Example?)

 Example: conditional code flags:
Add R1, R3
AddWithCarry R2, R4

 Instructions designed for execution on pipelined hardware should
have few side effects.

Instruction Hazards

Overview

 Whenever the stream of instructions supplied
by the instruction fetch unit is interrupted, the
pipeline stalls.

 Cache miss Cache miss

 Branch

Unconditional Branches

F2I2 (Branch) E2

Instruction

Execution unit idle

1 2 3 4 5Clock cycle
Time

F1I1 E1

6

I3

Ik

F3

Fk Ek

Fk+1 Ek+1Ik+1

Figure 8.8. An idle cycle caused by a branch instruction.

X

Branch Timing
X

F1 D1 E1 W1

I2 (Branch)

I1

1 2 3 4 5 6 7Clock cycle

F2 D2

F3

Fk Dk Ek

Fk+1 Dk+1

I3

Ik

Ik+1

Wk

Ek+1

(a) Branch address computed in Execute stage

E2

D3

F4 XI4

8
Time

- Branch penalty

- Reducing the penalty

Figure 8.9. Branch timing.

F1 D1 E1 W1

I2 (Branch)

I1

1 2 3 4 5 6 7Clock cycle

F2 D2

F3 X

Fk Dk Ek

Fk+1 Dk+1

I3

Ik

Ik+1

Wk

Ek+1

(b) Branch address computed in Decode stage

Time

Instruction Queue and
Prefetching

F : Fetch
instruction

Instruction queue

Instruction fetch unit

E : Execute
instruction

W : Write
results

D : Dispatch/
Decode

Figure 8.10. Use of an instruction queue in the hardware organization of Figure 8.2b.

unit

Conditional Braches

 A conditional branch instruction introduces
the added hazard caused by the dependency
of the branch condition on the result of a
preceding instruction.

 The decision to branch cannot be made until
the execution of that instruction has been
completed.

 Branch instructions represent about 20% of
the dynamic instruction count of most
programs.

Delayed Branch

 The instructions in the delay slots are always
fetched. Therefore, we would like to arrange
for them to be fully executed whether or not
the branch is taken.the branch is taken.

 The objective is to place useful instructions in
these slots.

 The effectiveness of the delayed branch
approach depends on how often it is possible
to reorder instructions.

Delayed Branch

Add

LOOP Shift_left R1
Decrement
Branch=0

R2
LOOP

NEXT

(a) Original program loop

R1,R3

LOOP Decrement R2
Branch=0

Shift_left

LOOP

R1
NEXT

(b) Reordered instructions

Figure 8.12. Reordering of instructions for a delayed branch.

Add R1,R3

Delayed Branch

F E

F E

F E

Instruction

Decrement

Branch

Shift (delay slot)

1 2 3 4 5 6 7 8Clock cycle
Time

F E

F E

F E

F E

F E

Shift (delay slot)

Figure 8.13. Execution timing showing the delay slot being filled
during the last two passes through the loop in Figure 8.12.

Decrement (Branch taken)

Branch

Shift (delay slot)

Add (Branch not taken)

Branch Prediction

 To predict whether or not a particular branch will be taken.
 Simplest form: assume branch will not take place and continue to

fetch instructions in sequential address order.
 Until the branch is evaluated, instruction execution along the

predicted path must be done on a speculative basis.
Speculative execution: instructions are executed before the Speculative execution: instructions are executed before the
processor is certain that they are in the correct execution
sequence.

 Need to be careful so that no processor registers or memory
locations are updated until it is confirmed that these instructions
should indeed be executed.

Incorrectly Predicted Branch

F1

F2

I1 (Compare)

I2 (Branch>0)

D1 E1 W1

Instruction

E2

Clock cycle 1 2 3 4 5 6

D2/P2

Time

I3 F3

F4

Fk Dk

D3 X

XI4

Ik

Figure 8.14.Timing when a branch decision has been incorrectly predicted
as not taken.

Branch Prediction

 Better performance can be achieved if we arrange
for some branch instructions to be predicted as
taken and others as not taken.

 Use hardware to observe whether the target
address is lower or higher than that of the branch
instruction.

 Let compiler include a branch prediction bit.

 So far the branch prediction decision is always the
same every time a given instruction is executed –
static branch prediction.

Influence on
Instruction Sets

Overview

 Some instructions are much better suited to
pipeline execution than others.

 Addressing modes

Conditional code flags Conditional code flags

Addressing Modes

 Addressing modes include simple ones and
complex ones.

 In choosing the addressing modes to be
implemented in a pipelined processor, we implemented in a pipelined processor, we
must consider the effect of each addressing
mode on instruction flow in the pipeline:

 Side effects
 The extent to which complex addressing modes cause

the pipeline to stall
 Whether a given mode is likely to be used by compilers

Recall

F1I1 E1D1 W1

Instruction

Clock cycle 1 2 3 4 5 6 7

Time

Load X(R1), R2

F2

F3

I2 (Load)

I3

M2D2

D3

W2

F4I4

Figure 8.5. Effect of a Load instruction on pipeline timing.

F5I5 D5

E2

E3 W3

E4D4

Load (R1), R2

Complex Addressing Mode

1 2 3 4 5 6 7Clock cycle
Time

Load (X(R1)), R2

F

F D

D E

X + [R1] [X +[R1]] [[X +[R1]]]Load

Next instruction

(a) Complex addressing mode

W

W

Forward

Simple Addressing Mode
Add #X, R1, R2
Load (R2), R2
Load (R2), R2

X +[R1]F D

F

F

F D

D

D

E

[X +[R1]]

[[X +[R1]]]

Add

Load

Load

Next instruction

(b) Simple addressing mode

W

W

W

W

Addressing Modes

 In a pipelined processor, complex addressing
modes do not necessarily lead to faster execution.

 Advantage: reducing the number of instructions /
program space

 Disadvantage: cause pipeline to stall / more
hardware to decode / not convenient for compiler to
work with

 Conclusion: complex addressing modes are not
suitable for pipelined execution.

Addressing Modes

 Good addressing modes should have:
 Access to an operand does not require more than one

access to the memory

 Only load and store instruction access memory operands Only load and store instruction access memory operands

 The addressing modes used do not have side effects

 Register, register indirect, index

Conditional Codes

 If an optimizing compiler attempts to reorder
instruction to avoid stalling the pipeline when
branches or data dependencies between
successive instructions occur, it must ensure successive instructions occur, it must ensure
that reordering does not cause a change in
the outcome of a computation.

 The dependency introduced by the condition-
code flags reduces the flexibility available for
the compiler to reorder instructions.

Conditional Codes
Add
Compare
Branch=0

R1,R2
R3,R4
. . .

(a) A program fragment

Compare
Add
Branch=0

R3,R4
R1,R2
. . .

(b) Instructions reordered

Figure 8.17. Instruction reordering.

Conditional Codes

 Two conclusion:
 To provide flexibility in reordering instructions, the

condition-code flags should be affected by as few
instruction as possible.

 The compiler should be able to specify in which
instructions of a program the condition codes are
affected and in which they are not.

Datapath and Control
Considerations

Original Design

Bus A Bus B Bus C

PC

Register
file

Constant 4

ALU

A

B

R

M
U

X

Incrementer

Memory bus
data lines

Figure 7.8. Three-bus organization of the datapath.

Instruction
decoder

MDR

Address
lines

MAR

IR

B
us

 A

B
us

 B

Control signal pipeline

PC

Register
file

ALU

A

B

R

Incrementer

B
us

 C

Pipelined Design

- Separate instruction and data caches
- PC is connected to IMAR
- DMAR
- Separate MDR
- Buffers for ALU
- Instruction queue
- Instruction decoder output

Instruction cache

Figure 8.18. Datapath modified for pipelined execution, with

IMARInstruction
decoder

MDR/Write

Instruction
queue

Data cache

Memory address

MDR/ReadDMAR

Memory address

(Instruction fetches)

(Data access)

interstage buffers at the input and output of the ALU.

- Reading an instruction from the instruction cache
- Incrementing the PC
- Decoding an instruction
- Reading from or writing into the data cache
- Reading the contents of up to two regs
- Writing into one register in the reg file
- Performing an ALU operation

Superscalar Operation

Overview

 The maximum throughput of a pipelined processor is
one instruction per clock cycle.

 If we equip the processor with multiple processing
units to handle several instructions in parallel in
each processing stage, several instructions start each processing stage, several instructions start
execution in the same clock cycle – multiple-issue.

 Processors are capable of achieving an instruction
execution throughput of more than one instruction
per cycle – superscalar processors.

 Multiple-issue requires a wider path to the cache
and multiple execution units.

Superscalar

Instruction queue

F : Instruction
fetch unit

W : Write
results

Dispatch
unit

Floating-
point
unit

Integer
unit

Figure 8.19. A processor with two execution units.

Timing

I1 (Fadd) D1

D2

E1A E1B E1C

E2

W1

W2
I2 (Add)

1 2 3 4 5 6Clock cycle
Time

F1

F2

7

D2

D3

D4

E2

E3 E3 E3

E4

W2

W3

W4

I2 (Add)

I3 (Fsub)

I4 (Sub)

Figure 8.20. An example of instruction execution flow in the processor of Figure 8.19,
assuming no hazards are encountered.

F2

F3

F4

Out-of-Order Execution

 Hazards

 Exceptions

 Imprecise exceptions

 Precise exceptions Precise exceptions

I1 (Fadd) D1

D2

D3

D4

E1A E1B E1C

E2

E3A E3B E3C

E4

W1

W2

W3

W4

I2 (Add)

I
3

(Fsub)

I
4

(Sub)

1 2 3 4 5 6Clock cycle
Time

(a) Delayed write

F1

F2

F3

F4

7

Execution Completion

 It is desirable to used out-of-order execution, so that an
execution unit is freed to execute other instructions as soon as
possible.

 At the same time, instructions must be completed in program
order to allow precise exceptions.

 The use of temporary registers
 Commitment unit

I1 (Fadd) D1

D2

D3

D4

E1A E1B E1C

E2

E3A E3B E3C

E4

W1

W2

W3

W4

I2 (Add)

I
3

(Fsub)

I
4

(Sub)

1 2 3 4 5 6Clock cycle
Time

(b) Using temporary registers

TW2

TW4

7

F1

F2

F3

F4

Performance
Considerations

Overview

 The execution time T of a program that has a
dynamic instruction count N is given by:

where S is the average number of clock cycles it
R

SN
T

where S is the average number of clock cycles it
takes to fetch and execute one instruction, and
R is the clock rate.

 Instruction throughput is defined as the number
of instructions executed per second.

S

R
Ps

Overview

 An n-stage pipeline has the potential to increase the
throughput by n times.

 However, the only real measure of performance is
the total execution time of a program.

 Higher instruction throughput will not necessarily
lead to higher performance.

 Two questions regarding pipelining
 How much of this potential increase in instruction throughput can be

realized in practice?

 What is good value of n?

Number of Pipeline Stages

 Since an n-stage pipeline has the potential to
increase the throughput by n times, how about we
use a 10,000-stage pipeline?

 As the number of stages increase, the probability of
the pipeline being stalled increases.

 The inherent delay in the basic operations increases.

 Hardware considerations (area, power,
complexity,…)

